

3535 UVA LED Datasheet

Features:

Slim Size SMD Package: Design Flexibility

UVA Wavelength: 365-420nm

Ceramic Base + UV Special Silicone Gel...

Faster Heat Dissipation

Environmental Friendly; ROHS Compliance

Customized Service Available

Applications:

LED Aquarium Light, LED Plant Growing Light..

LED Germicidal Lamp, LED Mosquito-lured Lamp...

LED Nail Lamp, Currency Detector...

Curing, Exposing, Beauty, Medical Equipment...

TABLE OF CONTENTS

PRODUCT NAMING RULES	3
CHARACTERISTICS	4
TYPICAL CHARACTERISTIC CURVES	5
RELIABILITY TESTS	6
SOLDERING CONDITIONS	7
DIMENSION	8
PACKAGING	9
PRECAUTIONS	10
PRECAUTIONS	11

PRODUCT NAMING RULES

LKL	XXXX	XX	XX	XXX	XXX
LKL	Туре	Peak Wavelength	Radiant Power	Light Beam Angle	Chip
LEKOLED	3535	V1	A1	0S/G: 120/140°	G45: Epileds 45mil
		V2	A2	3S/G: 30°	E45: Epistar 45mil
		V3	A3	4S/G: 45°	L45: LG 45mil
				6S/G: 60°	

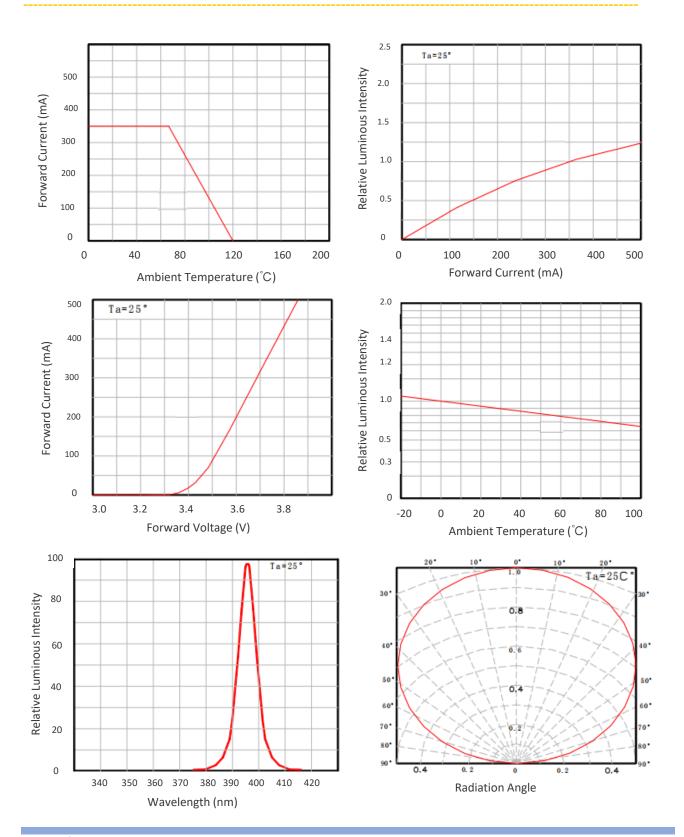
Code	Center Wavelength (nm)	Wavelength Range (nm)
V1	365	365-370
V2	375	370-380
V3	385	380-390
V4	395	390-400
V5	405	400-410
V6	415	410-420
V7	425	420-430

Code	Radiant Power Value (mW)
A1	0-50
A2	50-500
А3	500-900
A4	900-1200
A5	1200-1700
A6	1500-2000
A7	2000-3000
A8	3000-4000

CHARACTERISTICS

Peak Wavelength (nm)	Forward Voltage (V)	Forward Current (mA)	Radiant Flux (mW)	Model No.
395-400	3.0-3.6	700	1000-1500	LKL-3535V4A50SL45

Absolute Maximum Ratings at Tj=25°C


Symbol	Maximum Performance
I _F	700mA
I _{FP}	1000mA
P_{D}	3W
ltage V _R 5V	
I _R	10μ Α
2θ 1/2	120°
T _{OPR}	-30 ~ +75°C
T _{STG}	-40 ~ +85°C
T _j 120°C	
T_{SLD}	Reflow Soldering: 220°C for 10Sec
	I_{F} I_{FP} P_{D} V_{R} I_{R} $2\theta \ 1/2$ T_{OPR} T_{STG} T_{j}

Electrical/ Optical Characteristics at Tj=25°C

Parameters	Symbol	Min	Туре	Max	Unit	Condition
Forward Voltage	V _F	3.2		3.8	V	IF=700mA
Radiant Flux	Фе	1000		1500	mW	IF=700mA
Peak Wavelength	λр	395		400	nm	IF=700mA
Reverse Current	IR		10		μΑ	VR=5V
Thermal Resistance	Rth j-sp		8		°C/W	IF=700mA
Electrostatic Discharge	ESD		1000		V	НВМ

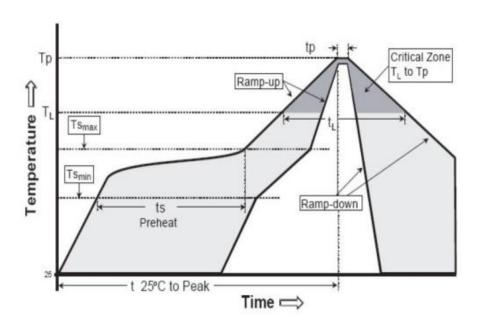
TYPICAL CHARACTERISTIC CURVES

RELIABILITY TESTS

Test Items	Test Conditions	Sample QTY	Ac/Re
Aging Tost	IF=700mA, Ta=25°C x6000hrs	22	0/1
Aging Test	IF=700mA, Ta=85°C x6000hrs	22	0/1
High Temperature Storage	100°C x1000hrs	22	0/1
Low Temperature Storage	-40°C x1000hrs	22	0/1
High Temp & Humidity	IF=700mA, 85°C, 85% RH for 6000hrs	22	0/1
Temperature Shock	-40°Cx30 min & +100°Cx30 min, 100cycle	22	0/1
ESD(HBM)	2000V HBM/ 1 Time	10	0/1

Criteria for Judging LED Failure (Tc= 25°C)

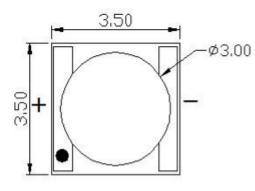
Items	Symbol	Test Conditions	Criteria for Judging LED Failure
Forward Voltage	VF	IF=700mA	>U x 1.1
Reverse Current IR		VR=5V	IR>/= 10μA
Lumen ΦV		IF=700mA	<\$ x 0.7

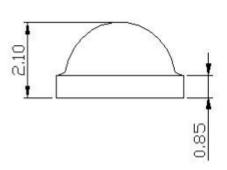

U refers to max value; S refers to initial value.

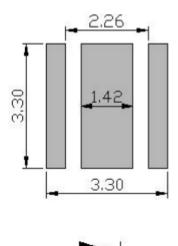
Notes: Judging criteria based on Tc=25 $^{\circ}$ C.

TYPICAL CHARACTERISTIC CURVES

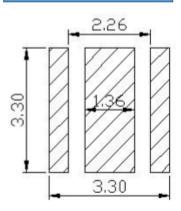
REFLOW SOLDERING PROFILE




Profile Features	Lead-free solder	Lead solder	Soldering by Manual
Ramp-up Speed(Ts max to Tp)	3 °C/ second max.	3 °C/ second max.	
Preheat: Min. Temperature(Tsmin)	130 °C	100 °C	
Preheat: Max.Temperature(Tsmax)	180 °C	150 °C	
Preheat: Time (tsmin to tsmax)	60~120 seconds	60~120 seconds	
Temperature to Keep: (TL) 200 °C		183 °C	Max. temperature: 350°C
Time to Keep: (tL) 60 seconds		60 seconds	3 seconds/1 time
Peak Temperature (Tp) 220 °C		215 °C	
temperature 10~30 seconds		10~30 seconds	
Ramp-down Speed 6°C/ second max.		6°C/ second max.	
Time to the peak Temperature	8 minutes max.	6 minutes max.	



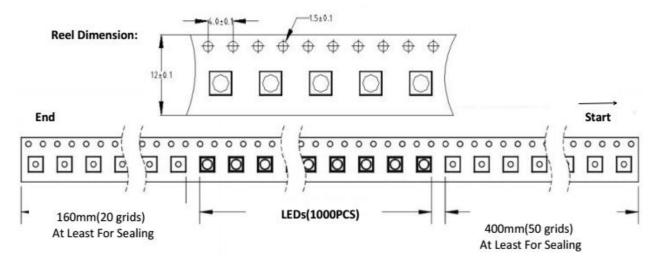
DIMENSIONS

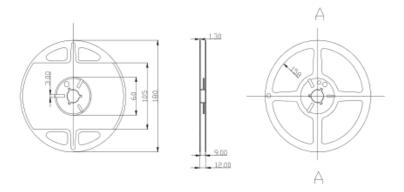

Unit: mm

Soldering Pad Dimension

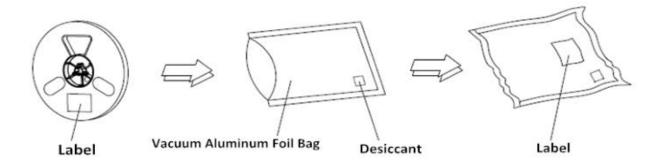
Notes:

*All dimensions are in millimeters.(tolerance:±0.1mm)


*The appearance and specifications of the product may be changed for improvement without notice.


PACKAGING

Tape Specifications (Units: mm)


Standard Package: 1000PCS/REEL (7 inches)

Reel Dimensions

Moisture Resistant Packaging

PRECAUTIONS

Storage Condition

- 1. Product should be stored in a dry, less than 30% relative humidity environment, storage temperature 5~30°C.
- 2. Avoid damaging the vacuum bags by the external force, in case of flat bags and being affected with damp.
- 3. Guard against damp, if it is, there is a need to put the reel patch in 60°C oven for 24 hours; After taking out the reel from the package, the lamp should be welded within 12 hours at best.
- 4. LEDS, already taking out from the original package but without being welded, should be stored in any of the following ways:
 - a. After opening, the LED lamp can be sealed in the original vacuuming bags again.
- b. Put component into the solid metal container with closed lid for storage, fresh desiccant and humidity card should be put in the container at the same time, and test the related humidity less than 30%.
- c. Put component into dry cabinet or container purified by nitrogen, and the cabinet or container can effectively keep the relative humidity below 30%.
- d. Reflow soldering should be finished within 24 hours after opening the package, and workshop condition should be less than or equal to $30^{\circ}\text{C}/60\%\text{RH}$.
- e. If there is no environment with relative humidity less than 30% for storage, it needs to bake for one hour before reflow soldering.
- 5. Stacking PCB or components of LEDs containing X series, don't drop all the weight on the lens of lamp. The force on the lens can lead to lamp falling off, and at least 2cm should be set aside above LED lens. Also, foam wrapping paper shouldn't be used directly on the lamp, LEDs may be damaged by the force from the foam wrapping paper.

Reflow Soldering Conditions

- 1. PCB board should be prepared or cleaned according to manufacturer's standards, then LED lamp can be put or welded on the PCB.
- 2. Our company LED design is used for welding on the PCB by reflow soldering. Reflow soldering can be finished in the reflow furnace, or put the PCB on the hot plate and operate according to the reflow soldering temperature curve.
- 3. Pay attention to reflow soldering conditions when using, the reflow soldering temperature should be debugged before using reflow soldering. Reflow soldering condition: preheating temperature 100~150°C, reflow soldering temperature 230~260°C, welding time within 10sec. Operators should receive electrostatic protective measures, and all equipment must be reliable grounding.
- 4. Reflow soldering is no more than 2 times.
- 5. Force and pressure should not be exerted on the lamp when carrying out reflow soldering.
- 6. PCB can not be packaged immediately after reflow soldering, and there needs natural cooling for PCB and lamp.

Cleaning after Reflow Soldering

1. Lamp should be cooled to room temperature after welding, then carrying out subsequent processing. Early to deal with the component, especially the part around the lens, may lead to damage of product.

PRECAUTIONS

- 2. The consistency of the weld is suggested to check. After avoiding the selected components on printed circuit boards, it seems to achieve full circle during welding process(no obvious welding particles). Looking from the back of package and PCB, empty holes should be seen hardly in welding area.
- 3. When cleaning PCB after welding, isopropyl alcohol can be used to clean PCB but without ultrasonic cleaning. Also the PCB board already equipped with lamps can not be cleaned by water.
- 4. Don't use the following chemicals for cleaning:
- a. Chemicals that may lead to outgassing of aromatic hydrocarbon compounds(such as toluene, xylene)
- b. Methyl acetate and ethyl acetate (i.e., nail cream cleaner)
- c. Cyanoacrylate (i.e., the super glue)
- d. Ethylene glycol (including Radio Shack ® precision electronic cleaning agent)
- e. PLIOBOND ® adhesives

Installation Methods

- 1. White LED has anti-static requirements, so corresponding anti-static measures should be taken during the process of installation and use.
- 2. Pay attention to the exterior line arrangement of all kinds of devices to avoid wrong polarity. Devices can't be too close to the heating elements, and working conditions can not exceed the prescribed limits.
- 3. When deciding to install in the hole, the size and tolerance of hole and distance between holes on PCB need to be well calculated to avoid excessive pressure forcing on the plate.
- 4. Avoid any vibration and external force on LED.

Working Conditions

- 1. In order to make LED work under a stable condition, protective resistance must be in series, and the resistance can be measured by supplied voltage or current of LED. LED working voltage and current are endowed by specifications of different LEDs.
- 2. There needs the circuit design to be carried out to prevent super voltage(or super current) when witching LEDs, short current or pulse current can both damage the connection of LED.
- 3. When LED source working, ambient temperature can affect the reliability of life, so please keep away from the heat source at work. At the same time, surface temperature is required to keep within 60°C.
- 4. Based on the incompatible volatile organic compounds existing in the LED solid-state lighting design, these may weaken the performance of the lighting system and shorten its service life, so please avoid using organic compounds during the process of design and working.

Other matters

- 1. This product is silicon encapsulation, so please avoid hard objects extrusion.
- 2. All the equipments contacting LED must be grounded, and operators must wear grounded anti-static gloves, anti-static shoes and anti-static clothing.