

5050 RGBW LED Datasheet

Features:

Slim Size SMD Package: Design Flexibility
High Lumen Output and High Efficacy
Stable Performance & Great CCT Unity
R, G, B, Y, A, UV, IR Light Color Available
Full Wavelength 365-730nm Available
Environmental Friendly; ROHS Compliance
Customized Service Available

Applications:

LED Module, Illuminated Advertising

Tube Light, Panel Light, Ceiling Lamp and other LED Indoor Lights

Flood Light, High Bay Light, Tunel Light and other LED Outdoor Lights

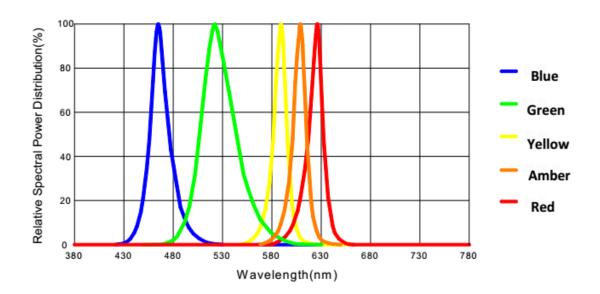
LED Aquarium Light, LED Plant Growing Light..

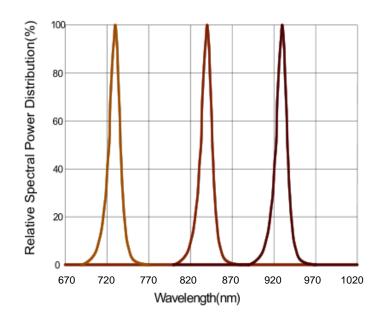
TABLE OF CONTENTS

PRODUCT NAMING RULES	3
CHARACTERISTICS	4
RELATIVE SPECTRAL POWER DISTRIBUTION	5
TYPICAL CHARACTERISTIC CURVES	6
RELIABILITY TESTS	7
SOLDERING CONDITIONS	8
DIMENSION	9
PACKAGING	10
PRECAUTIONS	11
PRECAUTIONS	12

PRODUCT NAMING RULES

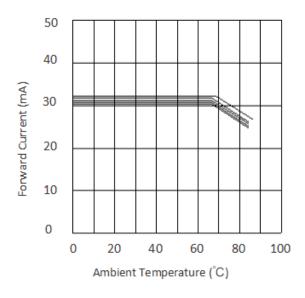
LKL	XXXX	XX	X	Χ	Χ
LKL	Туре	Light Color	Chip QTY	Beam Angle	SERIES
LEKOLED	5050	V1: 360-370nm	1: 1EA	0: 120°/140°	S
		V2: 375-385nm	2: 2EA		
		V3: 390-400nm	3: 3EA		
		V4: 400-410nm	4: 4EA		
		V5: 410-420nm			
		RB: 440-450nm			
		B2: 450-460nm			
		B3: 460-470nm			
		G2: 520-530nm			
		Y4: 585-595nm			
		A6: 600-610nm			
		R1: 620-630nm			
		DR: 660-665nm			
		IR1: 730-740nm			
		RGB / RGBW			
		RGBWW			

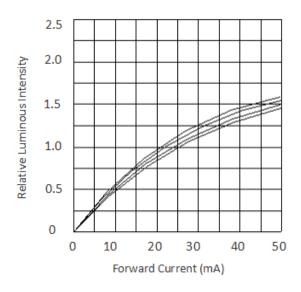

CHARACTERISTICS

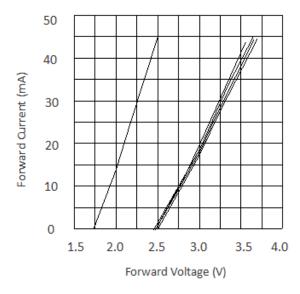

Light Color	Wavelength (nm)	Forward Voltage	Forward Current	Brightness	Model No.
RGBW	R: 620-630 G: 520-525 B: 460-470 W:6000K /3000K	R: 2.0-2.4V G: 2.8-3.2V B: 2.8-3.2V W: 2.8-3.2V	R: 20mA G: 20mA B: 20mA W: 30mA	R: 600-800mcd G: 1400-1600mcd B: 400-500mcd W: 10-12LM	LKL-5050RGBW40S

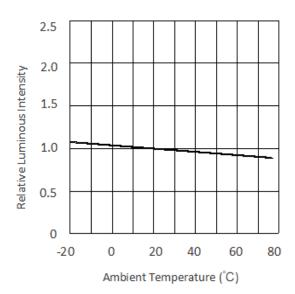
Absolute Maximum Ratings at Tj=25°C				
Parameters	Symbol	Maximum Performance		
Forward Current	I _F	30mA		
Power Dissipation	P _D	420mW		
Reverse Voltage	V _R	5V		
Viewing Angle	2θ 1/2	120°		
Operating Temperature	T _{OPR}	-25 ~ +80°C		
Storage Temperature	T _{STG}	-30 ~ +85°C		
Junction Temperature	Tj	115°C		
Electrostatic Discharge	ESD	1000V		
Soldering Temperature	T _{SLD}	Reflow Soldering: 230°C or 260°C for 10Sec		

RELATIVE SPECTRAL POWER DISTRIBUTION








TYPICAL CHARACTERISTIC CURVES

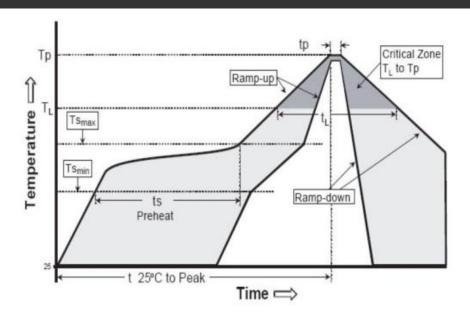
Specifications (IF=30mA, Tc=25 $^{\circ}$ C)

RELIABILITY TESTS

Test Items	Test Conditions	Note	Sample QTY	Number of Defective
High & Low Temperature Cycle	-25°C 30min ↑↓5min 80°C 30min	100 Cycle	22	0
Thermal Shock	-25°C 30min ↑↓5min 80°C 30min	50 Cycle	22	0
High Humidity Heat Cycle 30°C (=) 65°C 90%RH 24hrs/1cycle		10 Cycle	22	0
High Temperature Storage	Ta=80°C	6000hrs	22	0/1
High Humidity Heat Storage	Ta=60˚℃ RH=90%	6000hrs	22	0/1
Low Temperature Storage	Ta=-30˚℃	6000hrs	22	0/1
Aging Test	IF=30mA, Ta=25 $^{\circ}\mathrm{C}$	6000hrs	22	0/1
Aging rest	IF=30mA, Ta=85 $℃$	6000hrs	22	0/1
High Humidity Heat Aging Test	IF=30mA, Ta=60°C, RH=90%	1000hrs	22	0/1
Low Temperature IF=30mA, Ta=25 ℃ Aging Test		1000hrs	22	0/1

Criteria for Judging LED Failure (Tc= 25 $^{\circ}$ C)

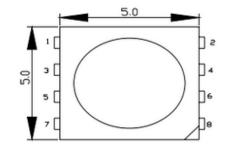
Items	Symbol	Test Conditions	Criteria for Judging LED Failure
Forward Voltage	VF	IF=30mA	>U x 1.1
Reverse Current	IR	VR=5V	IR = 10μA</td
Luminous Intensity	ФV	IF=30mA	<s 0.7<="" td="" x=""></s>

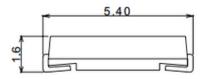

U refers to max value; S refers to initial value.

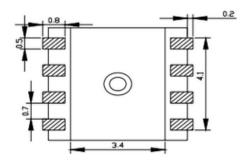
Notes: Judging criteria based on Tc=25 $^{\circ}$ C .

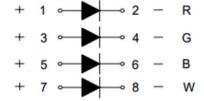
TYPICAL CHARACTERISTIC CURVES

REFLOW SOLDERING PROFILE



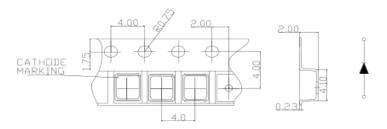

Profile Features	Lead-free solder	Lead solder	Soldering by Manual
Ramp-up Speed(Ts max to Tp)			
Preheat: Min. Temperature(Tsmin)			
Preheat: Max.Temperature(Tsmax)	200 °C	150 °C	
Preheat: Time (tsmin to tsmax)	60~180 seconds	60~120 seconds	
Temperature to Keep: (TL) 217 °C		183 °C	Max. temperature: 350°C
Time to Keep: (tL) 60~150 seconds		60~150 seconds	3 seconds/1 time
Peak Temperature (Tp)	260 °C	215 °C	
Time within the peak temperature (tp)	20~40 seconds	10~30 seconds	
Ramp-down Speed 6°C/ second max.		6°C/ second max.	
Time to the peak Temperature 8 minutes max.		6 minutes max.	



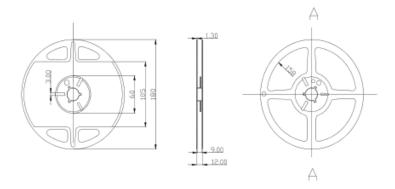

DIMENSIONS

Unit: mm

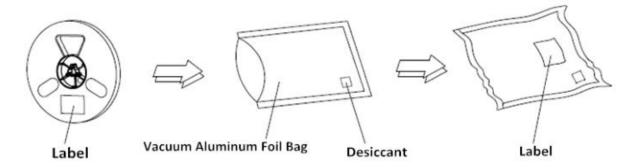
Notes:


*All dimensions are in millimeters.(tolerance:±0.1mm)

*The appearance and specifications of the product may be changed for improvement without notice.



PACKAGING


Tape Specifications (Units: mm)

Reel Dimensions

Moisture Resistant Packaging

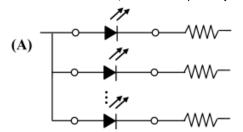
PRECAUTIONS

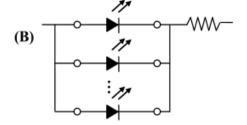
Storage

- 1. Moisture proof and anti-electrostatic package with moisture absorbent material is used, to keep moisture to aminimum.
- 2. Before opening the package, the product should be kept at 30 °C or less and humidity less than 60% RH, and beused within a year.
- 3. After opening the package, the product should be stored at 30° C or less and humidity less than 10%RH, and besoldered within 24 hrs (1day). It is recommended that the product be operated at the workshop condition of 30° C or less and humidity less than 60%RH.
- 4. If the moisture absorbent material has fade away or the LEDs have exceeded the storage time, baking treatment should be performed based on the following condition: (80±5) °C for 24 hours.

Static Electricity

- 1. Static electricity or surge voltage damages the LEDs. Damaged LEDs will show some unusual characteristic such as the forward voltage becomes lower, or the LEDs do not light at the low current. even not light.
- 2. All devices, equipment and machinery must be properly grounded. At the same time, it is recommended that wrist bands or antielectrostatic gloves, anti-electrostatic containers be used when dealing with the LEDs.


Vulcanization


LED curing is due to sulfur being in bracket and the +1 price of silver in the chemical reaction generated Ag2S in the process. It will lead to the capacity of reflecting of silver layer reducing, light color temperature drift and serious decline, seriously affecting the performance of the product. So we should take corresponding measures to avioding vulcanization, such as to avoid using sulphur volatile substances and keeping away from high sulphur content of the material.

Design Consideration

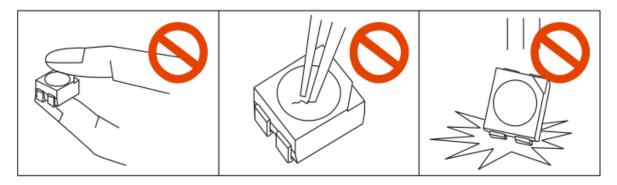
- 1. In designing a circuit, the current through each LED must not exceed the absolute maximum rating specified for each LED. In the meanwhile, resistors for protection should be applied, otherwise slight voltage shift will cause big current change, burn out may happen.
- 2. It is recommended to use Circuit A which regulates the current flowing through each LED rather than Circuit B.

 When driving LEDs with a constant voltage in Circuit B, the current through the LEDs may vary due to the variation in Forward Voltage (VF) of the LEDs. In the worst case, some LED may be subjected to stresses in excess of the Absolute Maximum Rating.

3. Thermal Design is paramount importance because heat generation may result in the Characteristics decline, such as brightness decreased, Color changed and so on. Please consider the heat generation of the LEDs when making the system design.

PRECAUTIONS

Safety Advice For Human Eyes


Viewing direct to the light emitting center of the LEDs, especially those of great Luminous Intensity will cause great hazard to human eyes. Please be careful.

The safe temperature for LEDs working

The high temperature will make the LEDs' Luminous Intensity decreased radically, if LEDs worked in hoteyes. Please be careful. environment for a long time, they will be disabled easily. When LEDs are working in a closed array, we suggest that the LEDs' surface temperature should be lower than 55° C and the legs' temperature should be lower than 75° C.

Others

1. When handling the product, touching the encapsulant with bare hands will not only contaminate its surface, but also affect on its optical characteristics. Excessive force to the encapsulant might result in catastrophic failure of the LEDs due to Die breakage or wire deformation. For this reason, please do not put excessive stress on LEDs, especially when the LEDs are heated such as during Reflow Soldering.

2. The epoxy resin of encapsulant is fragile, so please avoid scratch or friction over the epoxy resin surface. While handling the product with tweezers, do not hold by the epoxy resin, be careful.