LE<OLED

2835 UVA LED Series Datasheet

Features:

Slim Size SMD Package: Design Flexibility High Lumen Output and High Radiant Flux Stable Performance & Great Color Uniformity UV Wavelength 365-420nm Copper Base + UV Special Silicone Gel... Enviromental Friendly; ROHS Compliance Customized Service Available

Applications:

LED Aquarium Light, LED Plant Growing Light.. LED Germicidal Lamp, LED Mosquito-lured Lamp... LED Nail Lamp, Currency Detector... Curing, Exposing, Beauty, Medical Equipment...

TABLE OF CONTENTS

PRODUCT NAMING RULES	3
CHARACTERISTICS	4
CHARACTERISTICS	5
RELATIVE SPECTRAL POWER DISTRIBUTION	6
TYPICAL CHARACTERISTIC CURVES	7
TYPICAL CHARACTERISTIC CURVES	8
RELIABILITY TESTS	9
SOLDERING CONDITIONS	10
DIMENSION	11
PACKAGING	12
PRECAUTIONS	13
PRECAUTIONS	14

PRODUCT NAMING RULES

LKL	XXXX	XX	Х	Х	XXX
LKL	Туре	Light Color	Chip QTY	Beam Angle	Brightness
LEKOLED	2835	V1: 365-375nm	1: 1EA	0: 120°/140°	300M: 300-500mcd
		V2: 380-390nm	2: 2EA		600M: 600-800mcd
		V3: 390-400nm	3: 3EA		800M: 800-1000mcd
		V4: 400-410nm			1500M: 1500-1800mcd
		V5: 410-420nm			

CHARACTERISTICS

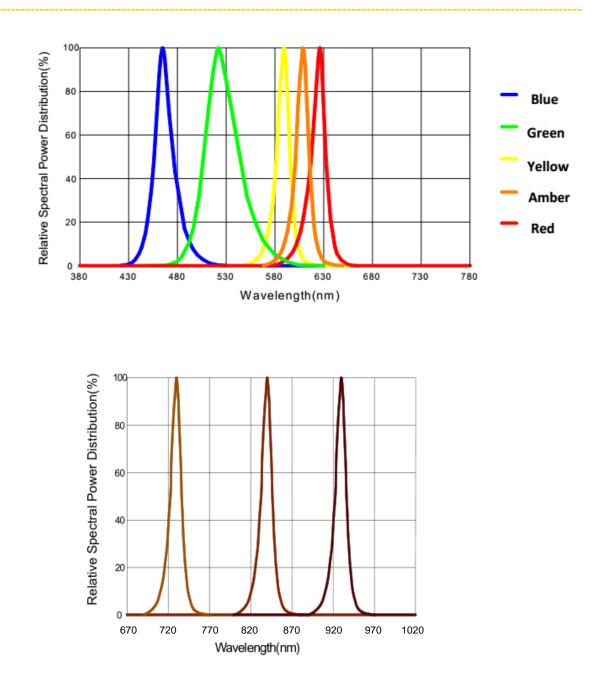
Specifications (IF=60mA, Tc=25°C)

		2.8-3.4V @60mA	Model No.	
Light Color	Wavelength (nm)	Luminous Flux		
UV	365-370	300-500MCD	LKL-2835V110300M	
UV	380-390	500-600MCD	LKL-2835V210500M	
UV	390-400	600-800MCD	LKL-2835V310600M	
UV	400-410	600-800MCD	LKL-2835V410600M	
UV	410-420	800-850MCD	LKL-2835V510800M	

Specifications (IF=150mA, Tc=25°C)

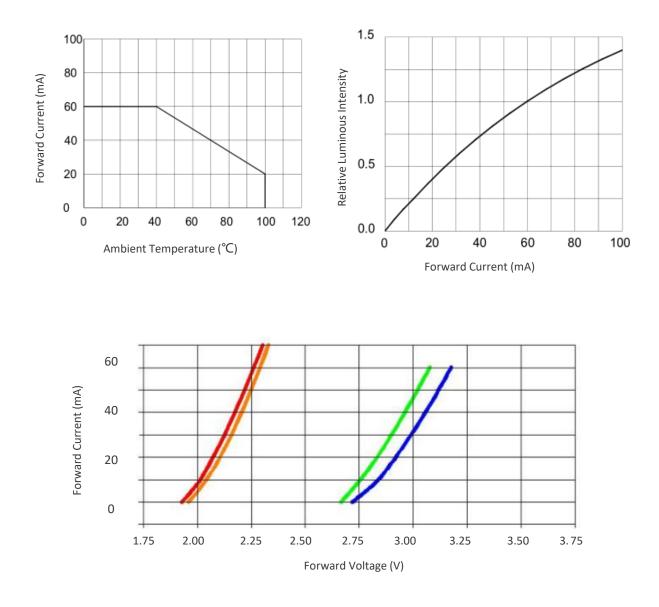
	Would wath (nm)	2.8-3.4V @150mA	Model No.	
Light Color	Wavelength (nm)	Luminous Flux		
UV	365-370	600-800MCD	LKL-2835V110600M	
UV	380-390	800-900MCD	LKL-2835V220800M	
UV	390-400	1500-1800MCD	LKL-2835V3201500M	
UV	400-410	1500-1800MCD	LKL-2835V4201500M	
UV	410-420	1500-1800MCD	LKL-2835V5201500M	

CHARACTERISTICS


Parameters	Symbol	Maximum Performance
Power Dissipation 1	P _D	0.2W
Power Dissipation 2	P _D	0.5W
Forward Current 1	I _F	60mA
Forward Current 2	I _F	150mA
Peak Pulse Current 1	I _{FP}	100mA
Peak Pulse Current 2	I _{FP}	200mA
Reverse Voltage	V _R	5V
Viewing Angle	20 1/2	120°
Operating Temperature	T _{OPR}	-30 ~ +75°C
Storage Temperature	T _{STG}	-40 ~ +85°C
Junction Temperature	Tj	115°C
Soldering Temperature	T _{SLD}	Reflow Soldering: 230°C or 260°C for 10Se

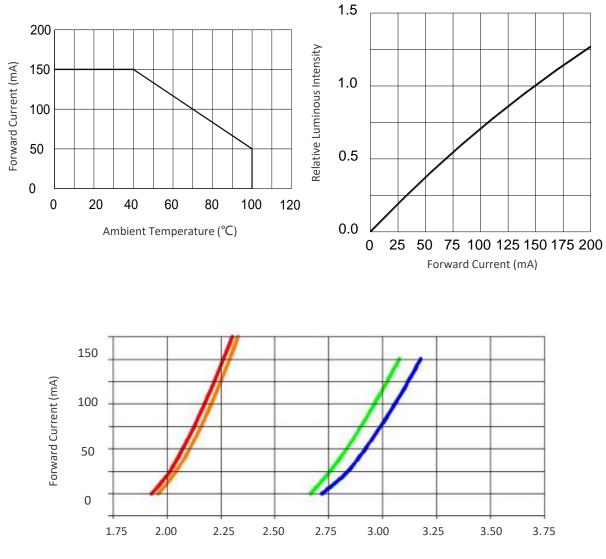
Electrical/ O	ptical Characteristics at T	i=25°C
		, <u> </u>

Parameters	Symbol	Min	Туре	Max	Unit	Condition
Forward Voltage	V _F	3.0		3.6	V	IF=60mA IF=150mA
Peak Wavelength	λр	365		420	nm	IF=60mA IF=150mA
Reverse Current	IR		10		μΑ	VR=5V
Thermal Resistance	Rth j-sp		8		°C/W	IF=350mA
Electrostatic Discharge	ESD		2000		V	HBM


LE<OLE

RELATIVE SPECTRAL POWER DISTRIBUTION

TYPICAL CHARACTERISTIC CURVES


Specifications (IF=60mA, Tc=25℃)

LE<OLED

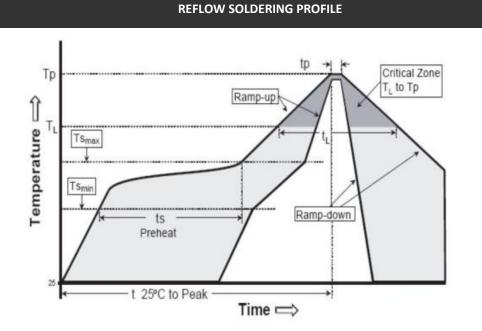
TYPICAL CHARACTERISTIC CURVES

Specifications (IF=150mA, Tc=25℃)

Forward Voltage (V)

RELIABILITY TESTS

Test Items	Test Conditions	Sample QTY	Ac/Re
Aging Test	IF=60-150mA, Ta=25℃ x6000hrs	22	0/1
Aging Test	IF=60-150mA, Ta=85℃ x6000hrs	22	0/1
High Temperature Storage	100 °C x1000hrs	22	0/1
Low Temperature Storage	-40°C x1000hrs	22	0/1
High Temp & Humidity	IF=60-150mA, 85℃, 85% RH for 6000hrs	22	0/1
Temperature Shock	-40℃x30 min & +100℃x30 min, 100cycle	22	0/1
ESD(HBM)	2000V HBM/ 1 Time	10	0/1


Criteria for Judging LED Failure (Tc= 25 $^\circ\!\mathrm{C}$)

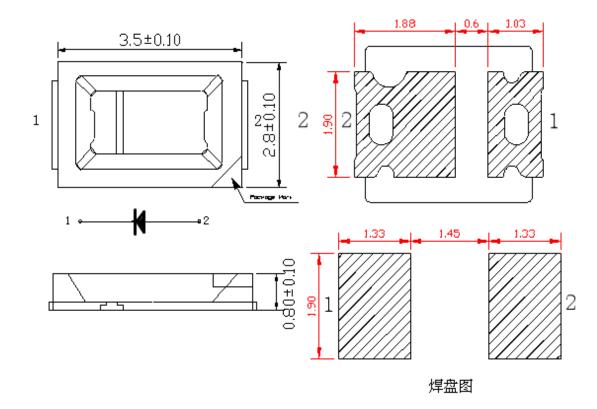
Items	Symbol	Test Conditions	Criteria for Judging LED Failure
Forward Voltage	VF	IF=60-150mA	>U x 1.1
Reverse Current	IR	VR=5V	IR>/= 10μΑ
Lumen	Φ٧	IF=60-150mA	<s 0.7<="" td="" x=""></s>

U refers to max value; S refers to initial value.

Notes: Judging criteria based on Tc=25 $^\circ\!\mathrm{C}.$

TYPICAL CHARACTERISTIC CURVES

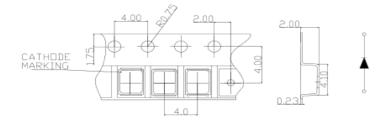
Profile Features	Lead-free solder	Lead solder	Soldering by Manual
Ramp-up Speed(Ts max to Tp)	3 °C/ second max.	3 °C/ second max.	
Preheat: Min. Temperature(Tsmin)	150 °C	100 °C	
Preheat: Max.Temperature(Tsmax)	200 °C	150 °C	
Preheat: Time (tsmin to tsmax)	60~180 seconds	60~120 seconds	
Temperature to Keep: (TL)	217 °C 183 °C		Max. temperature: 350°C
Time to Keep: (tL)	60~150 seconds	60~150 seconds	3 seconds/1 time
Peak Temperature (Tp)	260 °C	215 °C	
temperature	20~40 seconds	10~30 seconds	
Ramp-down Speed	6°C/ second max.	6°C/ second max.	
Time to the peak Temperature	8 minutes max.	6 minutes max.	


Copyright ©2018 LEKOLED Technology Corporation. All rights reserved. The information in this document is subject to change without notice. www.lekoled.com

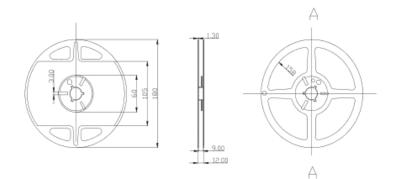
10

DIMENSIONS

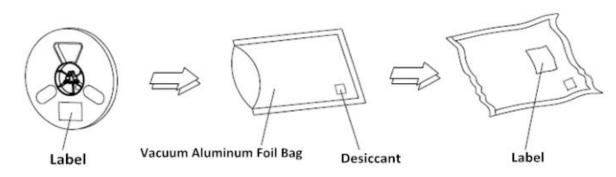
Unit: mm


Notes :

*All dimensions are in millimeters.(tolerance:±0.2mm)


*The appearance and specifications of the product may be changed for improvement without notice.

PACKAGING


Tape Specifications (Units : mm)

Reel Dimensions

Moisture Resistant Packaging

PRECAUTIONS

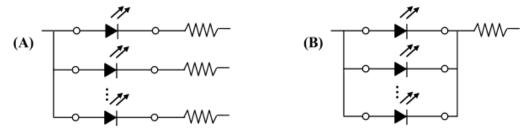
Storage

- 1. Moisture proof and anti-electrostatic package with moisture absorbent material is used, to keep moisture to aminimum.
- 2. Before opening the package, the product should be kept at 30 $^\circ C$ or less and humidity less than 60% RH, and beused within a year.
- 3. After opening the package, the product should be stored at 30 $^{\circ}$ C or less and humidity less than 10%RH, and besoldered within 24 hrs (1day). It is recommended that the product be operated at the workshop condition of 30 $^{\circ}$ C or less and humidity less than 60%RH.
- 4. If the moisture absorbent material has fade away or the LEDs have exceeded the storage time, baking treatment should be performed based on the following condition: (80±5)[°]C for 24 hours.

Static Electricity

- 1. Static electricity or surge voltage damages the LEDs. Damaged LEDs will show some unusual characteristic such as the forward voltage becomes lower, or the LEDs do not light at the low current. even not light.
- 2. All devices, equipment and machinery must be properly grounded. At the same time, it is recommended that wrist bands or antielectrostatic gloves, anti-electrostatic containers be used when dealing with the LEDs.

Vulcanization


LED curing is due to sulfur being in bracket and the +1 price of silver in the chemical reaction generated Ag2S in the process. It will lead to the capacity of reflecting of silver layer reducing, light color temperature drift and serious decline ,seriously affecting the performance of the product. So we should take corresponding measures to avioding vulcanization, such as to avoid using sulphur volatile substances and keeping away from high sulphur content of the material.

Design Consideration

 In designing a circuit, the current through each LED must not exceed the absolute maximum rating specified for each LED. In the meanwhile, resistors for protection should be applied, otherwise slight voltage shift will cause big current change, burn out may happen.

2. It is recommended to use Circuit A which regulates the current flowing through each LED rather than Circuit B.

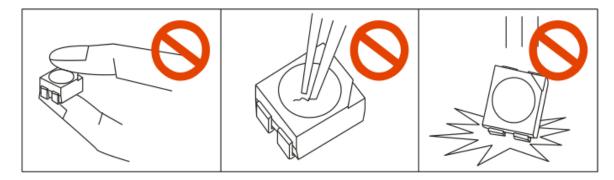
When driving LEDs with a constant voltage in Circuit B, the current through the LEDs may vary due to the variation in Forward Voltage (VF) of the LEDs. In the worst case, some LED may be subjected to stresses in excess of the Absolute Maximum Rating.

3. Thermal Design is paramount importance because heat generation may result in the Characteristics decline, such as brightness decreased, Color changed and so on. Please consider the heat generation of the LEDs when making the system design.

Copyright ©2018 LEKOLED Technology Corporation. All rights reserved. The information in this document is subject to change without notice. www.lekoled.com

PRECAUTIONS

Safety Advice For Human Eyes


Viewing direct to the light emitting center of the LEDs, especially those of great Luminous Intensity will cause great hazard to human eyes. Please be careful.

The safe temperature for LEDs working

The high temperature will make the LEDs' Luminous Intensity decreased radically, if LEDs worked in hoteyes. Please be careful. environment for a long time, they will be disabled easily. When LEDs are working in a closed array, we suggest that the LEDs' surface temperature should be lower than 55° and the legs' temperature should be lower than 75° .

Others

 When handling the product, touching the encapsulant with bare hands will not only contaminate its surface, but also affect on its optical characteristics. Excessive force to the encapsulant might result in catastrophic failure of the LEDs due to Die breakage or wire deformation. For this reason, please do not put excessive stress on LEDs, especially when the LEDs are heated such as during Reflow Soldering.

2. The epoxy resin of encapsulant is fragile, so please avoid scratch or friction over the epoxy resin surface. While handling the product with tweezers, do not hold by the epoxy resin, be careful.